.

AD-A286 027 X —
LT)

Universuy | s/“' 'é. ;
ot Southerr, ‘
C ahforma« j\} &

L_.__.____J

@
Knowledge Refinement in

a Reflective Architecture

Yolanda Gil

j—
i Accelig

USC/Information Sciences Institute ¢
4676 Admiralty Way NTIS

Marina del Rey, CA 90292-6695 DT
L

May 1994 (g

ISI/RR-94-378 ' Dy
T

I AR e T

N

R S . - -
.. -

3 Lo
. @EL.".‘.‘-»ar_..'f.
A :

@ NOV 0 319947

Tt

B o 9433904
AR
9411 1 0811

SCIENCES i /
[Nsnrunig , | 310/822-1511

676 Admiralty Way/Marina del Rey/California 90292-6695

Knowledge Refinement in
a Reflective Architecture

Yolanda Gil Acce T
USC/Information Sciences Institute : -— RN SU—
4676 Admiralty Way N /. i
Marina del Rey, CA 90292-6695 o ,
b
¥
g - l
May 1994 - i
IS/RR-94-378 =Y -
Lo
I -
Dist ¢ 2
|
Dy,
¢ I
B a ;)

e ¢\I‘ . y— [

NOV d3 1994 A

=

In Proceedings of the Twelfth National Conference of Artificial Intelligence ,
Seartle, WA August 1994

R f".:'.’.z:::‘- .
$OX Q_.' o . ¥

REPORT DOCUMENTATION PAGE OMBNO, 07040128

Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data

sources, ga and maintaining the data needed, and compisting and reviewing the coliection of information. Send comments r.guding this burden estimated or any

other aspect of this collection of information, Includ;a -uﬁgnungs or reducing this burden to Washington Headquarters Services, Directorate for iInformation Operations

and Reports, &1 go%%ﬁamn Davis highway, Suite 1 Adlington, VA 22202 , and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
ngto! d

Washl n,
1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1994 Research Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Knowledge Refinement in a Reflective Architecture DABT63-91-C-0025
6. AUTHOR(S)
Yolanda Gil
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
REPORT NUMBER

USC INFORMATION SCIENCES INSTITUTE

4676 ADMIRALTY WAY

MARINA DEL REY, CA 90292-6695 RR-94-378
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
ARPA AGENCY REPORT NUMBER
3701 Fairfax Drive
Arlington, VA 22203

11. SUPPLEMENTARY NOTES
In proceedings of the Twelfth National Conference of Artificial Intelligence, Seattle, WA, August 1994

12A. DISTRIBUTION/AVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

A knowledge acquisition tool should provide a user with maximum guidance in extending and debugging a knowledge base, by
preventing inconsistencies and knowledge gaps that may arise inadvertently. Most current acquisition tools are not very flexible
in that they are built for a predetermined inference structure or problem-solving miechanism, and the guidance they provide is
specific to that inference structure and hard-coded by their designer. This paper focuses on EXPECT, a reflective architecture that
supports knowledge acquisition based on an explicit analysis of the structure of a knowledge-based system, rather than on a fixed
set of acquisition guidelines. EXPECT"’s problem solver is tightly integrated with LOOM, a state-of-art knowledge representa-
tion system. Domain facts and goals are represented declaratively, and the problem solver keeps records of their functionality
within the task domain. When the user corrects the system’s knowledge. EXPECT tracks any possible implications of this change
in the overall system and cooperates with the user to correct any potential problems that may arise. The key to flexibility of this
knowledge acquisition tool is that it adapts its guidance as the knowledge bases evolve in response to changes introduced by the
user.

14. SUBJECT TERMS 15. NUMBER OF PAGES
knowledge acquisition; knowledge-base refinement; intelligent architectures 13
16. PRICE CODE
17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20, LIMITATION OF ABSTHACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCi_ASSIFIED UNLIMITED
-280-5500 tandard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with *-= rest of the report, particularly the cover and title page.
Instructions for filling in each block of wrm follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -Contract PR - Project

G -Grant TA -Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
repont. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and

Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)

and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not inciuded elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 17a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

M .eave blank.

Block 1... Distribution Code.

DOD - Leave blank.

DOE - Enter NOE distribution categoiies
from the Stzndard Distr'hution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Biock 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Knowledge Refinement in a Reflective
Architecture

Yolanda Gil

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
9il@isi.edu

In Proceedings of the Twelfth National Conference of Artificial Intelligence, Seattle, WA,
August 1994.

Abstract

A knowledge acquisition tool should provide a user with maximum guidance in extending
and debugging a knowledge base, by preventing inconsistencies and knowledge gaps that
may arise inadvertently. Most current acquisition tools are not very flexible in that they
are built for a predetermined inference structure or problem-solving mechanism, and the
guidance they provide is specific to that inference structure and hard-coded by their designer.
This paper focuses on EXPECT, a reflective architecture that supports knowledge acquisition
based on an explicit analysis of the structure of a knowledge-based system, rather than on
a fixed set of acquisition guidelines. EXPECT’s problem solver is tightly integrated with
LOOM, a state-of-the-art knowledge representation system. Domain facts and goals are
represented declaratively, and the problem solver keeps records of their functionality within
the task domain. When the user corrects the system’s knowledge, EXPECT tracks any possible
implications of this change in the overall system and cooperates with the user to correct any
potential problems that may arise. The key to the flexibility of this knowledge acquisition
tool is that it adapts its guidance as the knowledge bases evolve in response to changes
introduced by the user.

Keywords: knowledge acquisition; knowledge-base refinement; intelligent architectures.

1 Introduction

The knowledge about a task is not a collection of isolated information packets but rather a
carefully constructed web of facts, data, and procedures. The details of how knowledge is
organized and how it interacts may be unknown to the user and often hard to keep track of.
The key to knowledge acquisition is thus not in supporting the addition of more items to the
collection, but in ensuring harmonious interactions between new and existing knowledge and
preventing redundancies, inconsistencies, and knowledge gaps that may arise inadvertently.

Most tools for knowledge acquisition achieve this by having expectations about how
each piece of knowledge fits in the overall system [Marcus and McDermott, 1989; Musen,
1989; Kahn et al., 1985). For example, systems for classification tasks need knowledge for
mapping inputs into classes. When the user enters a new class, their acquisition tools always
expect to be given knowledge about how to assign an input to that new class. Having
these expectations is very useful to support knowledge acquisition in that they allow the
system to ensure that changes are introduced by the user in a harmonious way. However,
since each tool is designed for a specific type of task, the expectations are hard-coded in the
tool. This limits a tool’s flexibility, since applications often do not conform exactly to the
type of task that a tool was designed for and multiple problem-solving approaches may be
required within a given application. In addition, it is hard to determine beforehand the type
of problem-solving method that is needed for a new application.

The goal of the EXPECT project is to build tools for knowledge refinement that are
both flexible and supportive to the user. EXPECT forms dynamic expectations based on the
current knowledge of the system by understanding the content of the knowledge bases and
their interactions. These expectations are not hard-coded in the knowledge acquisition tool;
instead, they are explicitly created by the system when needed. The key to this goal is a
reflective architecture, i.e., a system that has the ability to introspect and determine exactly
what every piece of knowledge, old and new, contributes to the task.

EXPECT’s architecture is reflective because it represents and manipulates many different
types of knowledge distinctly and explicitly. Factual domain knowledge about a task (e.g., de-
scriptions, relations, and definitions) is represented in LOOM [MacGregor, 1988; MacGregor,
1991}, a state-of-the-art knowledge representation system of the KL-ONE family. Problem-
solving knowledge is represented in a procedural-style language that allows subgoal posting,
control programming constructs, and expressive parameter typing. EXPECT captures the
semantics of goals by translating them into LOOM concepts. The problem solver uses this
representation to reason about actions and their relation to concepts and instances in the
domain. By representing each type of knowledge declaratively and supporting interrelation-
ships between them, EXPECT has access to better understanding about the task than other
architectures may have.

This paper begins with an overview of EXPECT’s architecture and its knowledge acqui-
sition tool. Next we describe how a user interacts with the knowledge acquisition tool to
change the knowledge initially given to the system, taking examples from an application
that evaluates transportation plans. The paper continues with a discussion of how EXPECT
relates to other relevant work on knowledge acquisition. Finally, we present our plans for
future work and a conclusion.

Knowledge Acquisition)
agenda expectation KB
J
A
Execution
Trace Knowiedge Base
- —
Factual
User Problem Pt Knowledge
User gy, | Interaction] Exocuton fe@ Knoxvlne?ge Base
Manager/ < alvsis
Explainer r p
— Solving
Task Knowledge
Analyzer <
ot

Figure 1: A schematic representation of EXPECT’s architecture.

2 The EXPECT Architecture

EXPECT builds on previous research on the Explainable Expert System (EES) project [Neches
et al., 1985; Swartout et al., 1991]. EXPECT’s architecture is designed to provide an under-
standing of how each piece of information in a knowledge-based system contributes to solving
a task. This understanding comes from various features of the architecture that we describe
briefly in this section.

Figure 1 shows an overview of EXPECT’s architecture. In EXPECT, any information neces-
sary to perform a task is represented distinctly according to its nature either as domain facts
or as problem-solving knowledge. Domain facts are represented in LOOM [MacGregor, 1988;
MacGregor, 1991]. LOOM provides a descriptive logic representation language and includes
a classifier for inference. Problem-solving knowledge is expressed as EXPECT’s methods. A
method in EXPECT is an abstract and generic description of how a goal can be achieved
including the goal, a method body that describes the procedure to achieve that goal, and
the result that the method is expected to return. The goal of each method is also represented
in LOOM, referring to the concepts and instances that appear in the parameter list.

Figure 2 shows an example of EXPECT’s representation of factual and problem-solving
knowledge in a transportation domain. The first expression specifies that seaport is a kind
of port with ships, berths, covered storage area, and piers. The second expression is a very
simple method to find the seaports of a location by retrieving the value of the r-seaports
relation of the location. The last expression in the figure is a more complex method to
determine whether a ship fits in a seaport. Beside relations, the method body can contain
subgoals which can be combined using control structures such as conditional and iteration
statements. The methods shown here are domain-specific, but domain-independent generic

(defconcept SEAPORT
:is-primitive port
:constraints (and (some r-ships ship)
(some r-berths berth)
(some r-covered-storage-area number)
(some r-piers number)))

(defmethod FIND-SEAPORTS

:goal (find (obj 7?8 is (set-of (inst-of seaport)))
(of (?loc is (inst-of location))))
:result (set-of (inst-of seaport))

:method-body (r-seaports ?loc))

(defmethod DETERMINE-WRETHER-SHIP-FITS-IX-SEAPORT
:goal (determine-whether
(obj (?ship is (inst-of ship)))
(tits-in (?port is (inst-of seaport))))
:result (inst-of boolean)
:method-body (less (obj (r-length ?ship))
(than (compute-max (obj (spec-of length))
(of (set-of (spec-of berth)))
(in ?port)))))

Figure 2: Factual and problem-solving knowledge in EXPECT.

methods can be expressed with this same language.

In order to ensure coherence among the various types of knowledge, the problem solver
uses the factual and problem-solving knowledge sources to perform a static analysis of a
given top-level goal, recording how each piece of knowledge contributes to the problem-
solving process. EXPECT employs the reasoning capabilities of LOOM augmented with goal
refinement and reformulation as follows. EXPECT’s analysis is effectively a partial evaluation
of the given top-level goal. If no method is found to achieve a posted goal, the goal is
reformulated using the factual domain knowledge into a set of subgoals that can be achieved.
For example, if there is no method to find the speed of a ship and three types of ships are
described in the domain knowledge, the system will reformulate this goal into three subgoals
and look for a method to find the speed of each of the three types of ship. This analysis
provides the knowledge acquisition tool with an understanding of both the functionality and
the nature of all the information used for the task.

Another important source of understanding is the tight integration of the problem solver
with the LOOM classifier. In addition to classes and instances, EXPECT represents in LOOM
all the goals that arise during problem solving and matches goals and methods based on
their semantics using LOOM’s classifier. EXPECT’s matcher can find methods to achieve a
posted goal taking into account the semantic definitions of their respective arguments. Any
goal (i.e., a posted subgoal or a goal that a method achieves) is represented as a concept. For
example, the LOOM definition of the goal achieved by the method find-seaports (shown in

Figure 2) is:

(defconcept goal-concept--find-seaports
:is (and goal-concept FIND
(the OBJ
(and instance-set seaport))
(the OF
(and instance-description location))))

The matcher finds the type of the most general bindings for variables that can be used
to unify a posted goal and the goal that a method can achieve. The goal’s arguments may
be given in any order, because the matcher maps arguments according to their names.

In EXPECT, problem-solving errors also provide useful information for knowledge acqui-
sition. Errors (or simply anything that the system is not sure about and would like the
user to check) may come from the parser, the matcher, or the static analyzer. Instead of
interrupting problem solving when an error arises, the system takes it as a need for the
knowledge acquisition module to request the user’s intervention. The problem solver reasons
about these errors and provides detailed information to the knowledge acquisition tool that
is crucial to support the user in correcting them, as we show in the next section.

In summary, the facility to relate all the different sources of knowledge in the system and
capture their influence in the system’s behavior enables EXPECT’s knowledge acquisition tool
to support the user in changing the system’s knowledge.

3 Knowledge Acquisition in EXPECT

EXPECT’s knowledge acquisition module is invoked any time that errors in the knowledge
bases are encountered during problem solving. Besides errors, the problem solver also signals
possible problems that may result from a user’s changes to the knowledge base. The user
may not always foresee these possible problems, so the system takes the responsibility to
track them. We consider them possible lapses on the part of the user, and they are added
to an agenda of items that require user intervention. For example, if the user adds a new
method that achieves the same goal as a method that already exists, the system detects this
and notifies the user. Lapses are not necessarily errors, often they reflect things that the
system brings to the user’s attention and can be dismissed by the user after giving them
consideration. The system bases the agenda’s requests on information that is actually needed
for problem solving, and as a result the user is not bothered with unnecessary interventions.

EXPECT has a catalog of possible types of lapses together with possible actions that the
user may be suggested to take in order to correct each type of lapse. The information about
lapses is explicitly represented, and we find it is very useful as a means for the problem
solver to provide feedback to the knowledge acquisition tool regarding the status of the
current knowledge base.

Figure 3 shows a snapshot of EXPECT’s user interface. It allows the user to examine the
content of the knowledge bases and navigate through problem-solving episodes to understand

S RO U © EXPECTY -~ KNOWLEBGE ACQUISIYION -}

¥iE
o

S " s X L)
inhanze Oescnbe Agenda Instances Plans Nodes (st AcT1ON c ENXT WHAT
escun, (R-ROLL-UP- WEIGHT) —] (R-ROLL- UP- WEIGHT) [wissing value | B SEAPORTS | LOS-ANGELES ||
(YALUL - SUM)
missing value | R—BERTHS | LONC-BEACH {
/I](M»!(WIS
jmissing value | R-SHIPS | LOBG-BEACH |

///NUI (FIND-SEAPORT

7§ (FINO- SHIPS. 10~ TRAVEL) (2 i i RO DM ANELANC L e :
12) (FNO- Srier] .loc angeles 1s 8 Jocation.

KPORY - CARGO, 1 do not have any Other information about los
angeles.
I stil] need to know about the seaports, of los
angeles

You can also specify (but it 1s not required): the
wadth, the latitude, the longitude, the depth,

the length, the sirports, the country, the
marinas, ...

(CALCULATE - TIME - TO- TRANSPORT - M- SHIP) —n28] (w.muvj
Qult?

32] (VALUE - MAX)

Command : Describe
[Command: Instances
[Comsand: Delete Window Pane #<CLIM::CLX-WINDOW /x $7C:1070 y 266:766/ 1EFOIDE>
Command: Instances

fo o x

Figure 3: EXPECT’s user interface.

how the system achieves the task goals. The left side of the screen is showing the problem-
solving tree and the right side the current items pending on the agenda. In this snapshot,
the user had asked for a description of the instance Los Angeles, which caused the smaller
window in the lower right corner to pop up. In the description of Los Angeles, ‘he system
indicates that it is a location and that additional information about the seaports of Los
Angeles is needed in order to use this instance for problem solving. EXPECT knows that
this is needed because it is used in the method to find the seaports of a location shown in
Figure 2. Notice that this request is also an item on the agenda (the second one).

The user can interact with the system to resolve items on the agenda, or take the initiative
to add new knowledge or change the knowledge already in the system. EXPECT analyzes
how any change introduced by the user affects the problem solving required for the task,
and tries to detect any negative consequences provoked by the change. These also raise
lapses that are included in the user’s agenda. The knowledge acquisition tool can be used to
correct and extend the problem-solving knowledge as well as the factual knowledge. Table 1
summarizes the analysis that EXPECT performs for every modification done by the user. The
next sections describe with examples how this analysis supports the knowledge acquisition
process.

When the user adds an instance of a type:

1. If the type given for the instance is more general than the types that are used for problem
solving, find more specific types in the knowledge base and ask user to choose one.

2. Look up the roles defined for the instance type. Of those, find which roles are used for
problem solving and ask the user for their value.

When the user changes any method:

1. If the new method uses a role of a type that it did not use before, ask user for the value of
that role for all the instances of that type.

2. If the new method posts a subgoal, check that there is a method that matches with that
subgoal. If not, notify the user.

3. If the new method is not used to achieve any subgoal, notify the user.
4. If the new method has syntactic errors, ask user for corrections.

5. If the new method contains information that is not used for problem solving, notify the user.

Table 1: EXPECT performs a thorough analysis of every modification done by the user.

4 Adding New Instances

Suppose that the user wants to add a new instance. He or she selects the menu to add a
new instance, and types:

Name: Long Beach
Type: port

When a new instance is defined, EXPECT checks that the type given is specific enough. In
this case, the type is port, whose subtypes are airport and seaport. The problem solver’s
analysis of the task shows that the system needs to know the ships available at a seaport.
This is an indication for the knowledge acquisition tool that it is important to know if Long
Beach is a seaport. Thus, EXPECT requires the user to be more specific about the type of
port that Long Beach is. The user is shown the subtypes of port and is asked to pick among
them. If the user does not know this information, EXPECT will accept port, but will place an
item on the agenda to remind the user to provide this information when it becomes available.
But let us suppose that the user picks seaport as the type of the Long Beach port.

EXPECT next checks what information is needed for problem solving about this type of
instance. One method uses the ships available at a seaport and its berths. So the system
asks the user for this information. Again, if this information is not available, EXPECT will
place these requests in the agenda.

Now suppose that the user adds a new instance called Los Angeles of type location.
This type is specific enough for the problem-solving methods, and the information that they
need about locations is what seaports they have. EXPECT includes a new item in the agenda
to request this information.

At this point the agenda contains several items, each representing requests for information
about the new instances just defined. EXPECT provides the user with specific support for each
type of item on the agenda. Consider the item requesting information about the seaports of
Los Angeles. If the user clicks on this item, EXPECT pops up a menu with an explanation
of why this information is needed (i.e., which methods use this and what they accomplish).
The menu also contains possible actions that the user can undertake to resolve this agenda
item. In this case, the item requests the value of a role for an instance. EXPECT suggests

that the user:

e provide a value
e remove the instance

¢ modify the method, so it will not need this information.

Based on its underlying knowledge, EXPECT prescribes different solutions for each type
of item in the agenda. This information is represented declaratively, and EXPECT uses it to
dynamically create suggestions that are specific to the agenda item. In this case, if the user
chooses to provide the value Long Beach, then the agenda item will disappear.

This knowledge acquisition dialogue contains several important points. First, the system
understands how each type of instance is used and provides support for knowledge acquisition
based on this understanding. If the methods change and new information about a type of
instance is required, the system will realize this and update the agenda accordingly. Second,
the user is insulated from the details of the implementation because EXPECT keeps track of
what information is needed. Third, the agenda makes the dialogue very flezible, since the
user chooses when to attend to an item raised by the system.

5 Adding New Problem-Solving Knowledge

EXPECT also allows a user to modify problem-solving knowledge. The user can add more
detail to an existing method by inserting steps in the method body, or change a method’s
goal by adding new parameters or modifying the types of the ones that it currently has. The
user can also add new methods as we describe next.

If the user creates the method from scratch, EXPECT can provide little help because it
will not have an understanding of this new method until the user is finished with it. Instead,
EXPECT encourages the user to re-use existing methods in the knowledge base by using them
as the basis for new methods. Because EXPECT already understands these methods, it can
provide help in adapting them to new uses.

For e¢xample, suppose that the user wants to add a method to find the airports of a
location. In this case the user indicates that the new method to find airports is similar to
the existing method to find seaports (the one shown in Figure 2). EXPECT uses the latter as

7

a model, counting on the user to specify all differences. The user indicates that the relation
r~seaports has to be changed by r-airports, and the concept seaport by airport.

EXPECT builds a new method with these changes and adds it to the problem-solving
knowledge base. Then it checks how the new method affects the rest of the knowledge
currently in the system. The same checks are performed if an existing method is modified.

The first check concerns the validity of the new method in itself. This includes looking
for syntax errors, inconsistent type passing, and steps in the method whose results are not
used. Each lapse detected becomes an item on the agenda.

The second matter that EXPECT checks is how the new method relates to the rest of
the methoas. EXPECT understands that methods are used to achieve goals, so it will run
the static analyzer and make sure that the method is useful and that the subgoals that the
method body contains can be achieved by other methods. Again, EXPECT warns the user
via the agenda if it finds any problems.

Last, EXPECT checks if the new method needs information about instances that is not
currently available. In this case, it realizes that find~airports retrieves the value of
r-airports of instances of type location and consequently it adds an item to the agenda
to request this value for Los Angeles.

The scenario just described clearly follows an analogy process. EXPECT provides a frame-
work for analogical reasoning where the user suggests the source of the analogies, the map-
ping, and any necessary adaptations, and the tool provides the supporting environment for
navigating through the system’s reasoning and carrying out the user’s corrections through
analogical reasoning or any other mechanisms. We are currently extending our system to
provide support for finding similar methods using a non-exact matcher as we discuss below.
It is important to point out that if the user leaves out anything that is relevant, the analysis
that EXPECT performs to check the validity of the new method may detect that this is the
case and raise agenda items to be resolved by the user.

6 Related Work

EXPECT’s reflective architecture provides an understanding of the knowledge in the system
that can be used to form expectations about any new knowledge being added. Having ex-
pectations is be a powerful basis to support knowledge acquisition. TEIRESIAS [Davis, 1980]
used statistical techniques to form expectations about what terms were likely to co-occur.
More recent tools, such as SALT [Marcus and McDermott, 1989}, PROTEGE [Musen, 1989),
and MORE [Kahn et al., 1985], are built for a specific inference structure (e.g., classifica-
tion) and expect their knowledge base to be populated with information useful for that type
of task [Chandrasekaran, 1986; McDermott, 1988]. However, since their expectations are
hard-coded, these tools do not provide much flexibility [Musen, 1992). The problem-solving
structure of an application cannot always be defined in domain-independent terms. Further-
more, these method-specific inference mechanisms may not address some of the particulars
of an application simply because they were designed with generality in mind. Another prob-
lem with the method-specific knowledge acquisition tools is that they raise the non-trivial
issue of determining a library of possible methods. The work involved in handcrafting such a

library of methods, making sure to both provide wide-coverage of tasks and well-understood
characterizations of the inference capabilities of each method, is daunting.

To address these limitations, some researchers [Klinker et al., 1991; Puerta et al., 1992) are
developing libraries of problem-solving methods that handle finer-grained inference structures
than the ones above. These approaches provide more flexibility in building a knowledge-
based system, and we share their belief that this is a step in the right direction. EXPECT’s
expectations are as fine-grained as the user’s definitions. They are not hard coded, and are
based on understanding each piece of knowledge both individually and in conjurction with
others. EXPECT can be applied to tasks with any kind of inference structure.

NEODISCIPLE [Tecuci, 1992] integrates several machine learning techniques in a knowl-
edge acquisition tool. NEODISCIPLE takes a user-given answer to a problem and applies
explanation-based learning to build a plausible proof tree, abduction to complete the proof,
and several other learning techniques to generalize the proof. Its predecessor, DISCIPLE
[Tecuci and Kodratoff, 1990}, built an analogy with an existing proof when the system lacked
domain knowledge to build the proof for a new input. Our approach automates different
parts of the analogical process. The user suggests the source of the analogies, the mapping,
and any necessary adaptations. Qur tool provides support for carrying it out, checking the
validity of the new knowledge, and examining its effects in the current knowledge bases.

7 Discussion

We plan to extend EXPECT’s reflectiveness in two main directions. One is to improve the
understanding of goals through a relaxed semantic matcher, and the other is to extend
the current representation of agenda items to provide more comprehensive support for the
knowledge acquisition tool.

We have extended EXPECT’s semantic matcher to find non-exact matches of methods and
goals. By dropping parts of the definition of the goals, this relaxed matcher effectively does
a partial unification. The relaxed matcher may propose a method that has five parameters
that match exactly five of the six parameters of a posted goal. If a goal’s parameter is of a
certain type and no methods are found that match exactly, the relaxed matcher may propose
a method that applies to a more specific type or to another subtype of the same direct
supertype. The relaxed matcher can also describe what relaxations yielded the retrieved
method. We plan to use this relaxed matcher in our knowledge acquisition tool for several
purposes. One is to suggest model methods when the user creates a new method (as in the
find-airports example). Another possible use is in suggesting concrete solutions to agenda
errors. For example, if no method is found to achieve a goal the system may suggest to use
a method found by the relaxed matcher and indicate how to reduce their differences.

When EXPECT checks the effects in the knowledge bases of any change introduced by
the user, the agenda reflects any possible lapses that may arise. Each type of item on the
agenda is associated with a set of possible remedies that the system can suggest to the user
to resolve the item. All of this information is explicit in the knowledge acquisition tool.
We plan to categorize in more detail the possible lapses that may occur during knowledge
acquisition, their relevance to the task at hand, and the possible actions to resolve them. For
example, an item that signals that no method is available to achieve a frequently occurring

9

goal is crucial, while an item requiring information on a location that is never used may be
dismissed by the user. This categorization would allow the user to identify coherent states
of the knowledge base during the knowledge acquisition process, when the system is ready
for solving the task and can solve problems with an improved version of the knowledge base.
Lapse categorization would also allow better management of the agenda through a priority
mechanism based on the relevance of agenda items.

8 Conclusion

We have presented EXPECT, a reflective architecture for knowledge refinciiient that derives
a rich representation of the functionality of each piece of knowledge about a task. The
knowledge acquisition tool uses this functionality to reason about knowledge interactions
and support the user in changing the knowledge base. This makes EXPECT independent of
the problem-solving method of the task, a key feature that distinguishes our approach from
current knowledge acquisition tools.

Acknowledgments

The author would like to thank current and previous members of the EXPECT group, in par-
ticular Pedro Gonzalez, Bing Leng, Vibhu Mittal, Cécile Paris, Ramesh Patil, Bill Swartout,
and Marcelo Tallis. The clarity of this paper was improved thanks to comments from Eduard
Hovy, Kevin Knight, Bill Swartout, and the anonymous reviewers.

We gratefully acknowledge the support of the Advanced Research Projects Agency under
contract no. DABT63-91-C-0025. The view and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of ARPA or the U.S. Government.

References

Chandrasekaran, B. 1986. Generic tasks in knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Ezpert 1(3):23-30.

Davis, R. 1980. Knowledge-based systems in artificial intelligence. New York, NY: McGraw-
Hill.

Kahn, Gary, Steven Nowlan, and John McDermott. 1985. Strategies for Knowledge Acquis-
tion. JEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(5):511-522.

Klinker, G., C. Bhola, G. Dallemagne, D. Marques, and J McDermott. 1991. Usable and
reusable programming constructs. Knowledge Acquisition 3(2):117-135.

MacGregor, R. 1988. A deductive pattern matcher. In Proceedings of the 1988 Conference
on Artificial Intelligence. St Paul, MN.

10

MacGregor, R. 1991. The evolving technology of clascification-based knowledge represen-
tation systems. In Principles of Semantic Networks: Ezplorations in the Representation of
Knowledge, ed. J. Sowa. San Mateo, CA: Mourgan Kaufmann.

Marcus, S. and J. McDermott. 1989. SALT: A knowledge acquisition language for propose-
and-revise systems. Artificial Intelligence 39(1):1-37.

McDermott, J. 1983, Preliminary steps towards a taxonomy of problem-solving methods. In
Automating Knowledge Acquisition for Knowledge-Based Systems, ed. S. Marcus. Boston,
MA: Kluwer Academic Publishers.

Musen, M. A. 1989. Automated support for building and extending expert models. Machine
Learning 4(3/4):347-375.

Musen, M. A. 1992. Overcoming the limitations of role-limiting methods. Knowledge
Acquisition 4(2):165-170.

Neches, R., W. R. Swartout, and J. D. Moore. 1985. Enhanced maintenance and explanation
of expert systems through explicit models of their development. IEEE Transactions on
Software Engineering SE-11(11):1337-1351.

Puerta, A. R., J. W, Egar, S. W. Ty, and M. A Musen. 1992. A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-acquisition tools. Knowledge
Acquisition 4(2):171-196.
Swartout, W. R., C. L. Paris, and J. D. Moore. 1991. Design for explainable expert systems.
IEEE Ezpert 6(3):58-64.

Tecuci, G. and Y. Kodratoff. 1990. Apprenticeship learning in imperfect domain theories.
In Machine Learning: An Artificial Intelligence Approach, vol. 3. San Mateo, CA: Morgan
Kaufmann.

Tecuci, G. D. 1992. Automating knowledge acquisition as extending, updating, and improv-
ing a knowledge base. IEEF transactions on Systems, Man, and Cybernetics 22(6):1444-

1460.

11

